Crystal packing is stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding (Fig. 2). The water molecule is H bonded with the coumarin molecule of the same asymmetric unit $[\mathrm{O}(13) \cdots \mathrm{O} W=2 \cdot 587(4), \mathrm{O}(13)-\mathrm{H}$ $\left.=0.86 \AA, \mathrm{O}(13)-\mathrm{H} \cdot \cdots \mathrm{O} W=173.2(2)^{\circ}\right]$. In addition, the water molecule is also involved in an intermolecular hydrogen bond with the glide-related coumarin molecule $\left\{\mathrm{O} W \cdots \mathrm{O}\left(2^{i}\right)=2.773\right.$ (4), $\mathrm{OW}-$ $\mathrm{H}(\mathrm{O} W)=0.96 \AA, \mathrm{O} W-\mathrm{H} \cdots \mathrm{O}\left(2^{\mathrm{i}}\right)=151.5(2)^{\circ}[\mathrm{sym}-$ metry code: (i) $\left.-x, \frac{1}{2}+y,-z\right]$ \}. Yet another possible H bond is present between the water molecule and the 7 -hydroxy group but could not be fully characterized owing to the non-location of the second H atom on the water molecule from the difference maps \{the short contact is $\mathrm{O} W \cdots \mathrm{O}\left(7^{i i}\right)=2 \cdot 890(4) \AA$ [symmetry code: (ii) $\left.-x+1, y-\frac{1}{2},-z\right]$]. The characteristic $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond observed in $7-$ hydroxycoumarins, between the hydroxyl $\mathrm{O}(7)$ atom and the keto $\mathrm{O}(2)$ atom is also present $\left\{\mathrm{O}(7) \cdots \mathrm{O}\left(2^{\mathrm{iii}}\right)\right.$ $=2.710(3), \mathrm{O}(7)-\mathrm{H}=0.94 \AA, \quad \mathrm{O}(7)-\mathrm{H}(7) \cdots \mathrm{O}\left(2^{\text {iii }}\right)$ $=177.7$ (2) ${ }^{\circ}$ [symmetry code: (iii) $-x+1, y+\frac{1}{2},-z$ $+1]\}$ [see, for example, Subramanian, Sivakumar, Natarajan \& Parthasarathy (1990) and Ueno \& Saito (1976, 1977)].

The authors thank RSIC, IIT, Madras, for intensity data collection. One of the authors (KS) thanks UGC, New Delhi, for financial assistance.

References

Bravic, G. \& Bideau, J. P. (1978). Cryst. Struct. Commun. 7, 633-636.
Crombie, L., Jones, R. C. F. \& Palmer, C. J. (1985). Tetrahedron Lett. 26, 2929-2936.
Gnanaguru, K., Ramasubbu, N., Venkatesan, K. \& Ramamurthy, V. (1985). J. Org. Chem. 50, 2337-2346.
JOhnson, C.K. (1976). ORTEPII. Report ORNL-5138, Oak Ridge National Laboratory, Tennessee, USA.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Masilamani, V. (1979). PhD Thesis, Indian Institute of Technology, Madras, India.
Murthy, G. S., Ramamurthy, V. \& Venkatesan, K. (1988). Acta Cryst. C44, 307-311.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Ramasubbu, N., Gnanaguru, K., Venkatesan, K. \& Ramamurthy, V. (1982). Can. J. Chem. 60, 2159-2161.
Schweizer, W. B. \& Dunitz, J. D. (1982). Helv. Chim. Acta, 65, 1547-1554.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Song, P. S. \& Gordon, W. H. (1970). J. Phys. Chem. 74, 4234-4240.
Subramanian, K., Sivakumar, K., Natarajan, S. \& Parthasarathy, S. (1990). Acta Cryst. C46, 1661-1663.
Ueno, K. \& Saito, N. (1976). Acta Cryst. B32, 946-948.
Ueno, K. \& Sairo, N. (1977). Acta Cryst. B33, 283-285.
Valente, E. J., Trager, W. F. \& Jensen, L. H. (1975). Acta Cryst. B31, 954-960.

Trihydrate Structure of a Multisubstrate Inhibitor of L-DOPA Decarboxylase*

By J. M. Gulbis and M. F. Mackay
Department of Chemistry, La Trobe University, Bundoora, Victoria 3083, Australia
and M. M. Iles, M. N. Iskander and P. R. Andrews \dagger
School of Pharmaceutical Chemistry, Victorian College of Pharmacy Ltd, 381 Royal Parade, Parkville, Victoria 3052, Australia

(Received 25 September 1989; accepted 1 December 1989)

Abstract

C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O}, \quad M_{r}=400 \cdot 4\), monoclinic, $\quad P 2_{1}, \quad a=4.872$ (1),$\quad b=17.824$ (2),$\quad c=$ $11 \cdot 149$ (2) $\AA, \beta=107.09$ (1) ${ }^{\circ}, V=925.4$ (3) $\AA^{3}, Z=$ $2, \quad D_{m}($ flotation $)=1.44$ (1),$\quad D_{x}=1.437 \mathrm{Mg} \mathrm{m}^{-3}$, $F(000)=424, \lambda(\mathrm{Cu} K \alpha)=1.5418 \AA \AA, \mu=0.90 \mathrm{~mm}^{-1}$, $T=289$ (1) K. Final $R=0.062$ for 1096 observed

^[* (1S,3R)-6,7-Dihydroxy-1-(3-hydroxy-5-hydroxymethyl-2-methylpyridin-4-yl)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid trihydrate. \dagger Present address: Bond University, Gold Coast, Private Bag 10, Queensland 4217, Australia.]

0108-2701/90/091665-04803.00
data. The bridged diphenyl moiety comprising rings A and C linked through $\mathrm{C}(1)$ has a twist conformation, with the hydroxymethyl substituent at $\mathrm{C}\left(5^{\prime}\right)$ and the phenolic oxygen at $\mathrm{C}\left(3^{\prime}\right)$ in distal and proximal orientations respectively. The hydroxypyridine moiety is in the 1,3 -dipolar ionic form and the isoquinoline ring nitrogen, $\mathrm{N}(2)$, is protonated with ionization at the carboxylate group.

Introduction. In the search for specific reversible inhibitors of L-DOPA decarboxylase (EC4.1.1.38) we
have utilized the multisubstrate concept (Andrews, Iskander, Jones \& Winkler, 1982, 1988). The interest in finding inhibitors of this enzyme is justified by its important catalytic role in the synthesis of the known neurotransmitters dopamine, noradrenaline and serotonin in both central and peripheral neurons (Pletscher, Gey \& Burkard, 1966). Several such inhibitors including (I) have been synthesized and biologically evaluated against the activity of the target enzyme (Brinkworth, Iles, Iskander \& Andrews, 1988). Although the relative molecular structure of (I) has been previously established (Bringmann \& Schneider, 1986) and its absolute structure assigned by comparison with that of d-DOPA (II), the X-ray structure reported here has defined the conformational detail in the molecule of (I).

Table 1. Final atomic coordinates ($\times 10^{4}$) and equivalent isotropic temperature factors for the non- H atoms with e.s.d.'s in parentheses

$B_{\text {eq }}=\left(8 \pi^{2} / 3\right) \sum_{i} \sum_{j} U_{i j} a_{i}{ }^{*} a_{j}{ }^{\mathbf{*}} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
C(1)	-280 (17)	3610 (6)	10997 (6)	1.5 (1)*
N(2)	- 525 (13)	4379 (5)	11512 (6)	1.7 (1)
C(3)	-1976 (17)	4930 (6)	10512 (6)	1.6 (1)
C(4)	-226 (20)	5033 (6)	9602 (6)	$2 \cdot 6$ (2)
C(4a)	846 (17)	4304 (6)	9213 (6)	$2 \cdot 1$ (1)
C(5)	1918 (17)	4298 (6)	8172 (6)	$2 \cdot 1$ (1)
C(6)	3122 (18)	3656 (6)	7832 (6)	$2 \cdot 3$ (2)
O(6)	4299 (13)	3637 (5)	6881 (5)	$3 \cdot 2$ (1)
C(7)	3113 (17)	2990 (6)	8510 (6)	2.4 (2)
O(7)	4242 (13)	2356 (5)	8148 (6)	$3 \cdot 6$ (1)
C(8)	1976 (18)	2989	9507 (6)	$2 \cdot 3$ (2)
$\mathrm{C}(8 a)$	873 (16)	3644 (6)	9893 (6)	1.7 (1)
N(1)	4716 (15)	2385 (6)	14153 (6)	2.7 (1)
C(2')	5732 (18)	3066 (6)	13940 (6)	$2 \cdot 4$ (2)
C(3)	4183 (17)	3476 (6)	12862 (6)	2.1 (2)
$\mathrm{O}\left(3^{\prime}\right)$	5080 (12)	4126 (5)	12615 (5)	2.3 (1)
C(4)	1573 (16)	3149 (6)	12089 (6)	1.7 (1)
C(5)	719 (17)	2429 (6)	12362 (6)	$2 \cdot 2$ (1)
$\mathrm{C}\left(6^{\prime}\right)$	2372 (18)	2056 (6)	13390 (6)	2.4 (2)
C(9)	-2173 (17)	5687 (6)	11169 (6)	2.1 (2)*
O(9a)	-760 (13)	5738 (6)	12275 (6)	$3 \cdot 6$ (1)
$\mathrm{O}(9 b)$	- 3718 (13)	6170 (5)	10475 (5)	$3 \cdot 4$ (1)
C(10)	-1930 (21)	2067 (6)	11493 (9)	$3 \cdot 2$ (2)
O(10)	-2458 (13)	1376 (6)	11967 (6)	$4 \cdot 1$ (1)
C(11)	8392 (20)	3366 (6)	14881 (8)	3.4 (2)
OW(1)	3283 (17)	6741 (6)	3565 (6)	5.6 (2)
OW(2)	2777 (18)	332 (6)	5583 (6)	6.7 (2)
OW(3)	3361 (23)	4974 (6)	5655 (10)	$9 \cdot 7$ (3)

tropic $B=5.6$ (6) \AA^{2} for H atoms, converged at $R 0.062, w R 0.061, S 1.22$ (244 parameters varied); function minimized $\sum w\left(\left|F_{o}\right|-\mid F_{c}\right)^{2}$, with weights $\left(\sigma^{2}\left|F_{o}\right|+0.001|F|^{2}\right)^{-1} ; \quad$ an isotropic extinction parameter of the form $F_{c}=F\left[1-\left(4.0 \times 10^{-6}|F|^{2} /\right.\right.$ $\sin \theta)$] was applied to the calculated structure amplitudes. At convergence $(\Delta / \sigma)_{\text {max }} 0 \cdot 04,(\Delta \rho)_{\text {max }}+$ 0.31 and $(\Delta \rho)_{\min }-0.27 \mathrm{e}^{-3}$. Atomic scattering factors and anomalous-dispersion corrections from International Tables for X-ray Crystallography (1974). Figures prepared from the output of ORTEPII (Johnson, 1976). Major calculations made with SHELX76 (Sheldrick, 1976) on a VAX11/780 computer.

Discussion. Final atomic coordinates for the non-H atoms are given in Table 1.* The molecular conformation and numbering scheme are illustrated in Fig. 1 while the molecular geometry is given in Table 2.

The absolute molecular structure of (I) is shown in Fig. 1. The bridged diphenyl moiety comprising rings

[^1]Table 2. Bond lengths (\AA), valence angles $\left({ }^{\circ}\right)$ and selected torsion angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

Fig. 1. A perspective view of the molecule with thermal ellipsoids scaled to 50% probability. The carbons are denoted by numerals only, and hydrogens are included as spheres of arbitrary radius.
A and C linked through $C(1)$ has a twist conformation with the hydroxymethyl substituent at $\mathrm{C}\left(5^{\prime}\right)$ in the distal orientation and the phenolic oxygen at $\mathrm{C}\left(3^{\prime}\right)$ proximal. The torsion angles $\mathrm{C}(8 a)-\mathrm{C}(1)-$ $\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$ and $\mathrm{C}(8)-\mathrm{C}(8 a)-\mathrm{C}(1)-\mathrm{C}\left(4^{\prime}\right)$ have the

Table 3. Hydrogen-bonding dimensions $\left(\AA,{ }^{\circ}\right)$ in $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O}$

$X-\mathrm{H} \cdots Y$	$X \cdots Y$	$\mathrm{H} \cdots Y$	$X-\mathrm{H}$	$X-\mathrm{H} \cdots Y$
$\mathrm{~N}\left(1^{\prime}\right)-\mathrm{H}\left(1^{\prime} \cdots \mathrm{O} W(1)\right.$	$2.70(1)$	1.87	0.93	147
$\mathrm{~N}(2)-\mathrm{H}(2 a) \cdots \mathrm{O}\left(3^{\prime}\right)^{*}$	$2.68(1)$	1.90	$0.97 \dagger$	136
$\mathrm{~N}(2)-\mathrm{H}(2 b) \cdots \mathrm{O}\left(3^{\prime}\right)^{\mathrm{i}}$	$2.80(1)$	1.86	$0.97 \dagger$	162
$\mathrm{O}(6) \cdots \mathrm{H}(\mathrm{O} 6) \cdots \mathrm{O} W(3)$	$2.72(1)$	1.92	0.89	149
$\mathrm{O}(10) \cdots \mathrm{H}(\mathrm{O} 10) \cdots \mathrm{O}(9 b)^{\mathrm{ii}}$	$2.84(1)$	1.98	1.08	126
$\mathrm{O}(7) \cdots \mathrm{O}(9 b)^{\text {iii }}$	$2.67(1)$			
$\mathrm{O} W(2) \cdots \mathrm{O}(9 a)^{\text {iii }}$	$2.93(1)$			
$\mathrm{O} W(1) \cdots \mathrm{O}(7)^{\text {iv }}$	$2.77(1)$			
$\mathrm{O} W(1) \cdots \mathrm{O} W(3)^{v}$	$2.74(1)$			
$\mathrm{O} W(2) \cdots \mathrm{O}\left(3^{\prime}\right)^{\text {vi }}$	$2.92(1)$			
$\mathrm{O} W(3) \cdots \mathrm{O} W(2)^{\text {vii }}$	$2.97(1)$			
$\mathrm{O} W(3) \cdots \mathrm{O} W(2)^{\text {vii }}$	$2.72(2)$			

Symmetry codes: (i) $-1+x, y, z$; (ii) $-1-x,-\frac{1}{2}+y, 2-z$; (iii) $-x$, $-\frac{1}{2}+y, 2-z$; (iv) $x, y, 1+z$, (v) $-x,-\frac{1}{2}+y, 3-z$; (vi) $1-x,-\frac{1}{2}+y$, $2-z$; (vii) $-x, \frac{1}{2}+y, 1-z$; (viii) $1-x, \frac{1}{2}+y, 1-z$.

* Intramolecular interaction. $\dagger \mathrm{N}-\mathrm{H}$ bond distance constrained.

Fig. 2. Stereoview of the crystal packing. Direction of projection \mathbf{c}, the b axis is vertical. O and N atoms in the molecule shaded, water oxygens larger and unshaded.
respective values of $+76(1)$ and $+43(1)^{\circ}$, both having the same sign as is generally observed for bridged diphenyls (Van der Heijden, Griffith, Chandler \& Robertson, 1975). Ring B is in a half-chair form with atoms $\mathrm{N}(2), \mathrm{C}(1), \mathrm{C}(8 a), \mathrm{C}(4 \mathrm{a})$ and $\mathrm{C}(4)$ lying close to a plane (r.m.s.d. $0.09 \AA$) with $\mathrm{C}(1)$ at $0 \cdot 14$ (1) \AA and $C(3)$ at $0 \cdot 60$ (1) \AA from the plane. The hydroxypyridine moiety of ring C is in the 1,3dipolar ionic form, and the isoquinoline ring nitrogen of ring $B, \mathrm{~N}(2)$, is protonated with ionization at the carboxylate group. There is one intramolecular hydrogen bond in the structure in which $\mathrm{N}(2)$ is the donor atom in an interaction with the phenolic oxygen, $\mathrm{O}\left(3^{\prime}\right)$; the $\mathrm{N}(2) \cdots \mathrm{O}\left(3^{\prime}\right), \mathrm{N}(2)-\mathrm{H}(2 a)$ and $\mathrm{H}(2 a) \cdots \mathrm{O}\left(3^{\prime}\right)$ spacings are $2.68(1), 0.97$ and $1 \cdot 90 \AA$ respectively with the $\mathrm{N}(2)-\mathrm{H}(2 a) \cdots \mathrm{O}\left(3^{\prime}\right)$ angle 136°. All bond lengths and angles are normal (see Table 2).

Tlie crystal packing is illustrated in Fig. 2. Intermolecular hydrogen bonds link the inhibitor and water molecules into a three-dimensional network.

The $\mathrm{O} \cdots \mathrm{O}$ spacings range from 2.67 (1) to 2.97 (1) \AA and the $\mathrm{N}(1) \cdots \mathrm{O} W(1)$ and $\mathrm{N}(2) \cdots \mathrm{O}\left(3^{\prime}\right)$ spacings have the respective values of $2 \cdot 70$ (1) and $2 \cdot 80$ (1) \AA (see Table 3).

References

Andrews, P. R., Iskander, M. N., Jones, G. P. \& Winkler, D. A. (1982). Int. J. Quant. Chem. Quant. Biol. Symp. 9, 345-353. Andrews, P. R., Iskander, M. N., Jones, G. P. \& Winkler, D. A. (1988). Eur. J. Med. Chem. 23, 125-132.

Bringmann, G. P. \& Schneider, S. (1986). Angew. Chem. Int. Ed. Engl. 25, 177-178, and references therein.

Brinkworth, R. I., Iles, M. M., Iskander, M. N. \& Andrews, P. R. (1988). Int. J. Biochem. 20, 1273-1279.

International Tables for X-ray Crystallography (1974). Vol. IV, pp. 99, 149. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Pletscher, A., Gey, K. F. \& Burkard, W. P. (1966). Handb. Exp. Pharmakol. 19, 593-735.
Schöpf, C. P. \& Bayerle, H. (1934). Ann. Chem. 513, 190-202.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Van der Heijden, S. P. N., Griffith, E. A. H., Chandler, W. D. \& Robertson, B. E. (1975). Can. J. Chem. 53, 2084-2092.

Acta Cryst. (1990). C46, 1668-1671

Structure of a Photodimer of 3-Acetoxy-2-inden-1-one: 9,10-Dioxoindano[$\left.\mathbf{2}^{\prime}, 3^{\prime}: 4,3\right]$ cyclobuta[1,2-b]indan-4b,4c-diyl Diacetate

By N. Ramasubbu and K. Krishna Bhandary
Department of Oral Biology and Dental Research Institute, School of Dental Medicine, SUNY at Buffalo, Buffalo, NY 14214, USA

and Balawant S. Joshi, Qinging Jiang and S. William Pelletier*
Institute for Natural Products Research and School of Chemical Sciences, University of Georgia, Athens, Georgia 30602, USA
(Received 5 July 1989; accepted 5 December 1989)

Abstract

C}_{22} \mathrm{H}_{16} \mathrm{O}_{6}, \quad M_{r}=376 \cdot 37\), monoclinic, $P 2_{1} / c, a=9.555$ (3), $b=15 \cdot 664$ (2), $c=12 \cdot 300$ (4) \AA, $\beta=100.08(2)^{\circ}, \quad V=1812.5(5) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.379 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{Cu} K \alpha)=1.5418 \AA, \mu=8.0 \mathrm{~cm}^{-1}$, $F(000)=784$, room temperature, $R=0.047, w R=$ 0.064 for 3203 observed reflections $[I>3 \sigma(I)$]. The molecule exists as the syn-trans isomer in the crystal. The crystal structure exhibits a number of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$

 intermolecular contacts.Introduction. In connection with the synthesis of radermachol (Joshi, Gawad, Pelletier, Kartha \& Bhandary, 1984), we carried out a photochemical reaction between 3 -acetoxy-2-inden-1-one and 1,1,4,4-tetramethoxy-1,4-dihydronaphthalene. The photochemical reaction of enones with olefins has been investigated by several workers and fairly good yields of the photoaddition product have been obtained (Bryce-Smith \& Gilbert, 1964; Barltrop \& Hesp, 1967; Pappas \& Portnoy, 1970; Maruyama, Otsuki \& Naruta, 1973; Otsuki, 1976). However, in the present case, the indenone being highly reactive, rapidly dimerized to give a compound $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{O}_{6}$ (1);

[^2]0108-2701/90/091668-04\$03.00
the same compound was also obtained by photo reaction of the indenone. Four isomeric structures of the truxenone derivatives (syn-cis, syn-trans, anti-cis and anti-trans) are possible for the dimer. It was difficult to make a choice among the four, based only on the ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and mass spectral evidence. The correct structure was therefore determined by X-ray diffraction and is reported here.

(1)

Experimental. 3-Acetoxy-2-inden-1-one was prepared by following a reported procedure (Sraga \& Hunciar, 1986). The dimer was obtained by irradiating a solution of the indenone (100 mg) in benzene $(400 \mathrm{ml})$ at 285 K for two hours under nitrogen with a medium pressure mercury lamp. The solvent was removed and the product crystallized from benzene to afford the dimer (63 mg). This was recrystallized © 1990 International Union of Crystallography

[^1]: * Lists of structure amplitudes, anisotropic thermal parameters, H -atom coordinates and short intermolecular approaches have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52822 (15 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * To whom correspondence should be addressed.

